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we give an explicit formula which describes the'solution of the

problem of the vibrating string with a plane obstacle. This formula

allows us to prove continuous dependence on the data; a regularity

result is given. We prove some results on the convergence of the

penalized problem, and give a numerical scheme.

A few results are given without the requirement that the obstacle

be plane. {_
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SIGNIFICANCE AND EXPLANATION

The purpose of this paper is to continue the study of the following

problem: a string is constrained to remain on one side of a material obstacle.

We consider its transverse vibrations, and we assume that, when the string hits

the obstacle, no energy is lost. It was proved in a previous paper that when

the obstacle is concave i.e. has the form of a bowl (with the plane obstacle

as a limiting case), then there exists a unique solution for a given initial

position and velocity of the string. We prove here that when the initial posi-

tion and velocity are slightly changed, the solution is only slightly changed.

Moreover, if we replace the rigid obstacle by an elastic one, if the obstacle is

plane, and if the initial data are sufficiently regular, then the solution we

obtain is close to the solution of the original problem. We also give a

numerical scheme for computing the solution.

This subject is a first approach to considering problems of mechanical

vibrations with unilateral constraints; a number of elliptic and parabolic

problems with unilateral constraints have been solved, but very few hyperbolic

problems, i.e. problems describing vibrating modc s such as the above obstacle

problem, have been tackled successfully.
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NEW RESULTS ON THE VIBRATING STRING
WITH A CONTINUOUS OBSTACLE

A. Bamberger t
M. Schatzman

I. INTRODUCTION

I.1. Presentation of the problem and the results.

This paper aims to give some new results on vibrating strings with obstacles. The

model is the same as in [1], but as it appears necessary to elucidate several points of

the modelization which was exposed there, we shall give it from the beginning.

We consider the small transverse vibrations of a string that is constrained to be

on one side of a material obstacle. Let the transverse displacement at time t of the

material point of the string with coordinate x be denoted by u(x,t). If the string

were free, i.e. if there were no obstacle, then u would satisfy the wave equation

Du= u tt - uxx = 0.

We assume that the obstacle has position P(x). We translate the requirement that the

string stay on one side of the obstacle into the inequality

(1) u(x,t) > S(x) V x,t

When the string does not touch the obstacle, its motion satisfies the wave equation,

and thus

(2) supp Cu c {(x,t)/u(x,t) =(x)

We require that the string does not stick to the obstacle; this can be translated as

(3) [u > 0 ,

which means that the obstacle does not exert a downwards force on the string.

Notice that (3) is essentially equivalent to subsonic propagation of interactions.

To see this, let t = o(x) a curve which separates a region M of the half rlanc

I (0,-) in two open regions 6+ and 6- where lu vanishes. Su!,lose that _z-
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and u = u, are sufficiently smooth, and that14C

(4) u-(x,0(x)) = i(x)

(5) u ± (x, t) > (x) V (N't)

Then we can compute lu in the sense of distributions, with a test function:

- u >) + ( u
(1Juit))X tX

(8)

I 'L= t- - (x,3(x)) + -- (x, (x)) ,(x) I .(x,i(x))dx.

Relation (4) can be differentiated, with respect to x , and implies

(7 3Lu_ Ju- u . ,
(7 - (x,o(x)) = -'3(X) - - I (x, (x):)x j x I :it i

Introducing (7) into (8), we get:

(Eu,, f = . t x,:(x)) (1 - . .. (X) ) (x, 1(x )dx.

But hypothesis (4) and (5) ensure that

u+ (x,O(x)) . 0 and iu- (x,.(x))

Therefore, Lu is non-negative if and only if l,' I is almost ever!where smaller than 1.

It is not enough to suppose that conditions (1), (2) and (3) are sati:;fied, as

nothing has been said of the evolution of the energy of the string during the collision

with the obstacle.

The hypothesis that will be made is that the energy is conserved. Thi; requiremcnt

should be analysed from a mathematical point of view as follows: the condition must 1,e

loce,l, because the propagation properties of hyperbolic equations suggest it, and it

must be satisfied wherever in the x,t half-plane the free wave. equation is :;atisfied.

Thus, multiplying by -1 the relation

(8) .u = 0 on

where 4' is an open region such that (8) is :atis fied , we ohtain a r, lati ,n ill Jivrq nc,-

form

()-t - --'t i'l AX(9). ' , ,x I ,×x ,t I"

T : 0! uratiornsy. which we deduce (9) out of (8) are valid if - and - ar, ocall.

. quare-inteqra hle in r (f),

i~ ..... ..,i-;-i



The energy condition we shall impose is

(10)[2 0

in the sense of distribution on IR (0, =.

We could alternatively write it as

def 2 2(l Su d=f(-2UxUt, u x +u t

Sli) = 0~

Here, the first component of the vector field S is the energy density flux, and the

second component of the vector field S is the energy density.
u

u ]u
Notice that (10) cannot be deduced by multiplying (3) by , as 7 must be

expected to be discontinuous on the support of Eu.

For initial conditions such that the free solution correspondinq to them is locally

of bounded energy, it was proved in [1] that the Cauchy problem (1)-(3) and (11) possesses

a unique solution if the function € is convex.

The approach which led to condition (11) is essentially a mathematical one; from

the mechanical point of view, one would like to know if (11) implies that the velocity

of the string after collision is the opposite of the velocity of the string before colli-

sion. The answer is affirmative, but one has to give a meaning to

(12) -- (x t + 0)= -2 (x,t - 0) if (x,t) - su.p Iu.

This was the purpose of part V of [1], where it was shown that if

o is Lipschitz continuous on I, with Lipschitz
(13)

constant 1 , and (1 0 on 3P

(14) fa(u (xt):2 + u (xt) 2)dx C(a,b) V a - 0, V b 0 , V t _ b
-a Ix t-a

and if (3) is satisfied, then right- and left- derivatives can be defined almost every-

where on the non charactr-ristic parts of the curve t = (,(x).

Morcover, if (11) holds, then for all i satisfying (13), we have:

(15) --- (x,(x)) = (x,(x))i  a.e. on x/ (x)

-3-



We shall prove in paragraph II the following explicit formula in the case of the plane

obstacle.

Let w be the free solution of the wave equation

fOw = 0

w(x,O) = UoCx),

wCtx,O) = u 1x)

net the obstacle be = 0 , and let the backward wave cone be

- def <~
- {(X't,'/0 < t' t x-x'b.

Let us denote by r the negative part of a number

r = sup(-r,O)

Then the solution of the problem (1) - (3) and (11) is given by

u(x,t) = w(x,t) + 2 sup{(w(x',t'l))-/(x',t') Tx}.

This formula shortens considerably a previous proof 161 of continuous dependence on

data, and is the key for the numerical scheme studied in paragraph III. We shall give

ir paragraph IV a regularity theorem in spaces of bounded variation, in the case of a

general concave obstacle.

In paragrapn V, we shall consider the functions u, which solve the problem

1-

(16) uA(x,O) = u0 (x)

7T (x.0) = u (x)

In the first part of this paragraph, we shall prove a weak convergence result, which does

not depend on the shape of P or on the regularity of the initial data. The limit func-

tion will satisfy a set of energy inequalities instead of (11).

du
In the second part, we shall assume that the obstacle is plane, and that an-

u, are locally of bounded variation. Then the solution of (16) converges stronal" 1:

c(Z I)+ and its limit is the unique solution of (1)-( 3 ) and (11).

-4-



1.2. Notations and summary of previous results.

We shall use throughout this paper the following notations and definitions:

V is the set of functions u such that

(17) fa (JU x(X,t) 12 + ut (x,r) 12)dx < C(a,b) < +- Va,b V t < b
-a

w is the free solution of the wave equation:

Ow = 0,

(18) w(x,0) U W x
0

wtlx,O) = WlX

E is the set

E = {(x,t)/w(x,t) < V(x)}

I is the domain of influence defined by

(19) 1 = uT+ t/(x,t) E E)

where Tx,r is the forward wave cone {(x',r')/t' > t + Ix-x' I, and its boundary is

given by

31 = {(x,r)/t = T(x)}

(20) where T is Lipschitz continuous with Lipschitz constant 1

(see [1], Proposition 11.3 for the proof of this claim).

The backward wave cone Tt is {(x',tl)/O < t' < t - jx-x'l}.

The characteristic coordinates C and q are given by

(21) x+r -x+r

with the notation z(E,n) = z( , C ) for all functions of two variables x and t.

We shall call problem (P.) the following problem: given u0  H 1c(R), uI  Lo (l)

satisfying the compatibility 
condition

(22) u0(x) > (x)

u 1(X) >0 a.e. on fxju0 (x) = ,(x)}

find u in V such that

(1) u > p

(2) supp 0 u c {(u t)/u(x,t) =(x)l

(3) Ou > 0

-5-



2
(10) 

t
+(u ut) + x (-2uxu) = 0 in the sense

of distributions in IR × IR
+

u(x,0) = U0(x)
(23) 0

U t (x,0) = u (x).

The precise statement of the results of existence and uniqueness in fl] is as follows:

Theorem 0. The Problem P possesses a unique solution u if " is non-negative.

Moreover, this solution u is the unique solution of the linear problem

u V

uu (x,t)/t ' I(x) =0

(24) -(x,(x) + 0) =-L (x,i(x) - 0) a.w. on {x/ r(x) 0 & i (x) .

u(x,0) = u0 x)

'u (xO) = u x)

If L is the measure defined by

(25) = -2 w t (x, i x)) ( - T'(x) (x,(x))dx~#
then the solution of (19) is given by

(26) u = w +

where [ is the elementary solution of the wave equation with support in the positive

light cone:

= 2 on J(xt)/t jxJ'

(27)
&= 0 else',here.

It will be useful to consider the problems P xt , which are just P restricted to the

backward wave cone Tx't , with initial data given on [x - t, x + ti. Clearly, u is

a solution of P if and only if it is a solution of P for all x P., t 0 .' x,t

The first result on the convergence of the penalty method for the string with an obstacle

was proved by A. Bamberger [2!.

An explicit formula for the string with a point obstacle was obtained by L. Amerio

in [3] and by :1. Schatzman in (41, with a different argument.

-6-



Continuous dependence on the data and convergence of the penalty method for 
the

point obstacle are proved in [41. See also the results of C. Citrini [51, when

regularity assumptions are relaxed.

I
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II. THE EXPLICIT FORMULA. CONTINUOUS DEPENDENCE ON THE INITIAL DATA

11.1. The explicit formula for the infinite string.

In the case of the zero obstacle (and more generally, the plane obstacle), the solu-

tion of (P.) can be expressed by an explicit formula. We denote by r sup(r,O) the

negative part of a number.

Theorem 1. The unique solution of P when = 0 is given by

(28) u(x,t) = w(x,t) + 2 sup [w(x',t')]
(x',t')ETX't

Remark 2. If the obstacle is plane, i.e., if N(x) = ax + 3, then (28) can be

generalized:

(29) u(x,t) = w(x,t) + 2 sup [w(xt') - OW)].
x',t')ETX't

To deduce (29) from (28) it is enough to consider u - N, and notice that C:' = 0.

The proof of Theorem I comes in several steps.

The first step is the following result:

Lemma 3. The set where sup{[w(x',tl)] /(x',t') E Tx } does not vanish is the interior
x't

of the domain of influence 1.

Proof. If w(x',t') < 0 for some (x',t') in the backward cone Tx't I then ix,t)

belongs to the forward cone T the vertex of which is in the interior of . Thus

(x,t) is in the interior of I . Conversely, if (x,t) belongs to the interior of I

then there exists a point (x',t') in the interior of E such that (x,t) belongs to

the interior of T + We can Thoose this (x',t') such that w(x',t') be strict.

negative, because the set of (x',t') such that w(x',t') < 0 is dense in the interior

of E . Therefore, sup [w(x',t')] > 0 .

(x', t' )CT ,

Let us define

(30) k(x,t) = inf {w(x',t')/(x',t') Tx I
x't'

Then, thanks to Lemma 3, we have, if u is defined by (28)

u(x,t) = w(x,t) for t r(x),
(31) u(

U(x,t) = w(x,t) - 2k(x,t) for t (x).

-8-



Lemma 4. Let u0  and u, satisfy the compatibility conditions (22), and let I 1,e

nonempty. Then the function k satisfies

(32) UOk = 0 in the interior of I

Proof. Let us extend w to the whole plane 1R, R, by solving the (backward) wave eruuati-.

f W(x,0) U 0(W

(33) w (x,0) u= x

OW =0 for t <0 , x - IR~

The assumption that 1 is not empty implies that, on the line of influence:

w(x,r(x)) = 0 if IT'(x)I l

w t(x, Wx) < 0 a.e. on fx/IT'(x) I < 11.

We shall prove that w(x,t) > 0 for t < 1(x, by essentially the same argument as

in (1), Theorem IV.2. For the convenience of the reader, let us sketch it here.

Let U = [x/w(x,tc(x)) >.,'(X)) = U ab

where the open sets Ja.,b. [ are the connected components of U . Then Lemma I1.G of

[1] tells us that

(34) 1t(x) = min(T(a. + x-a. tc(b. + b. x), v x Ia.,b A

Therefore if we set

a. +T(a.) b. +T(b.)
1 1 - 72

(3)-a. + T(a.) -b. + T(b.)
= 1 - 1 1

the line of influence in characteristic coordinates is such that

Yi M _ = _ = if ;~ 'V

if Yis te mutivauedmapping defined by

n t(6

-9-



Let w(7,,) f(, + q(,), where f and g are in II
1 (O) . From (35), we deduce
1oc

f(7) + g(.) _ 0 for :. and from (34), f(,) + g(-.) > 0 forI - - il - i - - - '

As we must have f(:) +g(') = 0 f(") + g(ri) = , by definition of U, r, i

and , then

(37) f( ) f(.- ) f(<) v [i ,
1 1

Similarly,

(38) g(: i) = g(rl) g(,) ' ',

On C , the complement of the set U [F ,[2], we have
1 1

i(39) f (r) - 0 a.e.

The simplest way to see this is to notice that Y is one valued on C , and that

f(;) + g(Y()) 0 on C

+ g(y()) 0 for <

Let us evaluate now f(L) + g(C]). Suppose first that X(,-) = Y-(n) is one valued.

Then

x (n)
i f() + g(n]) = g(T) + f(X(n)) - 1 f'C')d 

'  
-

(40) C
- [f(min(2',X(r))) - f(max(F.,t))]

1 1
i

where the summation is extended to the indices such that [,] intersects [r,X(,).
1 1

We have:

g(n) + f(X(n)) _ 0

X(n)
1 f (7')dr- 1 0 by (39).

C

As X(-) is one valued, it is not contained in the interior of an interval . i

Thus

min[2! ,X))= if [Vi' 2] [V,X(' )1 and, if V. [ '
: '

the corresrondinq term in the sum vanishes. For . in V., J , the term in the sum is

f(: ) - f( )
I

i is n,, positive, b (3.7). Therefore, the ex[ressi,)- (4,2) is non-negative for

X . If we suj'ose that X( we have to stud, the expression

ir ]
Y (" 1 f3 l f 1 f m n ' , ') 1~a ( . ' )

and the result till holds, i.e.:

-10-



(41) w(x,t) _ 0 for t < T(X).

Thanks to (41), we may redefine k as

k(x,t) = inf{w(x',t')/t' I t - jx-x'j},

or still, in characteristic coordinates,

(42) k(,n) = inf{f(C') + g(n')/[' < C & n' < n}.

Then, it is immediate that

(43) k( ,n) inf{f(')/ ' _ 6} + inf{f(n')/,n' < n),

which proves the claim of Lemma 4. M

We shall now prove that u , defined by (28) satisfies the transmission condition

across the line of influence.

Lemma 5. If u is defined by (28), then almost everywhere on {x/IT*(x)I < 1),

(44) ( ( + 0) = - . (XT(X) - 0).

at at

Proof. Let A = {x/IT'(x)I < 1}. Then, almost everywhere on A , by Corollary A.2 of [1],

(45) w x(x,r(x)) and wt(x,T(x)) exist.

Let x be a point satisfying (45), and let us denote

W (X,T(x)) = a , wt(x,T(x)) = b , T'(X) = m

Then,

a + mb , b < 0

and

w(x',t') = a(x'-x) + b(t' - T(x)) + (x'-x, t' - T(x))

where

lim t~r x)[rI+Isl+0 * 0

We have

inf{a(x'-x) + b(t' - T(x))/(x',t') T t = b(t - T(X))
X't

and therefore,

b(t - (x)) - sup{i (x'-xt'-t) /7(x') t' t - Ix-xI} _
(46) k(x,t) b(t - T(x)) + Ji(O,t - T(X))I.

-11-
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As IT'(x)j < 1 , we have

lim [sup(IE(X'-X,t'-t)/T(X') < t' < t - X-X'I/t - T(X)] = 0
t+T (X)

and we deduce from (46) that

lira "'-"t - ( () - Wt (X,T(X))
t T(X) t T(X)

under the assumption (45).

Conclusion of the proof of Theorem 1.

Lemmas 3, 4 and 5 imply that the function u defined by (28) solves the linear

problem (24), up to the condition u E V . Therefore it remains to check this last condi-

tion. If we take into account the formula (43), let us show that k is in V

1
We know that f is in Ho (R);letloc (R e

f( ) = inf{f( ')/ ' < }

Then, we can compute the derivative of f(&) almost everywhere:

(47) = 0 if f(&) > f(O) or if f'(&) > 0(47)

f' ()= fl(E) if f(C) = f(&) and if f'(E) < 0

1We deduce from (47) that f is in Hloc(IR). Similarly, g is in Hlo c (IR) . The

function k which can be written as

k(x,t) = +t± +g(X'V2.' 72(

will therefore be in V , i.e.

f (Ikxx,t)12
+ Ikt(x,t) 12 )dx < C(a,b) V a,b, V t < 0

-a
and thus u is in V .

-12-
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IL2. Continuous dependence on the data

Corollary 6. The map (u,u I) u which to an element of H1  (IR) L 2 Q) satisfyin
loc loc

the compatibility condition (22) associates the solution of P is continuous from

H )I 2 (R) equipped with the strong topology to
1 c lo c

wi'P([0,+-); L 2 O R ) ) n LPo ( [ 0 , + - ) ; HI OR)
loc boo loc o

equipped with the strong topology, for all finite p

Proof. We have at once the continuity from H 1C(m) x L 2o() to C ( , + ) .I c loc1,'p( 0,+ n)) LP ([0,+"),H
The topology on W 1 o(IR)) n L(o+ cH IcOR) ) is defined by the

semi-norms for A,B > 0

q (u) = IU(0,0)I + (fB (f A(u 2 + u
2
, (xt)dx) P/2)l/P

1p 2 0 -Ax t

The topology on H () x L (iR) is defined by the semi-norms for A > 0
c c duO 2

PA(uOul) = lu0 (o) I + (fA (j + lu11
2)dx)i" 2

-A

It has been proved in [1], paragraph IV.2 that for solutions of P with zero obstacle

I2 (xt)I = I2 (X+t,0) l
(48) Cx t)I = I <- Cx-to) I

Therefore
TA (u x12 + lutI 2) (x,t)dx jA (Cu 12 + 1u 2) (x,t)dx <

-A -A
(49)

t Idx dx A,t > 0.

Let qA be the semi-norm

qAB- (v) = v(0,0) + ess sup C A(IVx1 2 + IVtl 2 )(x,t)dx)
1/2

tA 0,1] -A

Then, (49) implies

(50) qAB (u) < PA+B(U0 + U)

If (u0 ,un) is a sequence of initial data satisfying the compatibility condition (22)
1 2

and converging to (u0 ,u ) in H 1c(IR) L c R ) , then, as a consequence of (5),
1 bc bocn 1+

(51) u n u in H (iR x 3R+) weakly
boc

and moreover, (48) implies that

-13-



u , •t) -dx -- 7(x,t) dx V t, A 0

-A -A
(5)[A .u

n  2 A 2,
(53 (x, t) dx -

A  
_u (x, t) v t,

-A -A

Gathering (51), (52) and (53), we obtain

IsI(54) in if Jo I!
($) u inl H1 l - .fl ) strongix'

Thanks to Fubini' tli-orem, one has from (54)

(u; ( , ) (t (- t ) ( x (''t)'I-It (°'t))
(5~) x tx t(55)

in (L oC(1 ) ) strongly, fur almo;t all tic

The relation (55) toqetheir with the estimate
nn nAB 

(un
) _i 5Uls u , u)

n l r,
imply that u converges to u in the space -;loc( P,+);L Oc(M.)) lot,

H (fOR). a
loc

Remark 7. The mapping (u,u u is not continuous to W
1  

' (n1o
U Iloc loc

L o[,);II OC(P)) which is the space '. defined in (17).

Take for instance the sequence of initial data

n n n+l
U jl, ~= -
u 1' n

As these do not depend on x , the solution of P i

I n+l if n

un(xt) n+l n
n+ t -- if t -

_ n --n+l '

with the limit

1 - t if t 1

u(Xt) =
t - I if t 1

Then we may calculate (I (u - u):
AD

(u
n  

_ u) - r; if B n

nl

q (u
n - u) = 2A if B n

AB n+

T.us if B I , ' (u
n 

- u) doe; nct tcnd to z( r as n trnds to infinit.'. a

-14-



I 11. 3. Application of the explicit formula to the finitf- string with fixed ends.

* The explicit formula (29) will allow us to give a simple construction of the solution

of Pf where P is thet problem of th0 vibrating string with fixed ends, and obstacle

= -K . The only mndificAtion with respect to P , is that we shall require u to

1 1' 2
be in th_ pace L (,j,T;h )0',L)) W ((j,T;L (o,L)) tor all T - 0

In fact u will be in the space

. 11' , 2((" 0 ) 11 (0,L)) w l" ((u,,); L2(0,L))

because we can integrate (10) on any rectangle (0,L) - 10,T], and we get the energy

equality for arbitrary times T

(56) u - +xT u ~ 2xT dx fl u,2 d2

0) dx.

Let us define2
* L du 2 )1 d /2

Ij dx~ +,u Jx

Then

u(x,t) - u(O,t) = fx ux(x, ,t) dx' e x
0

and similarly

u(x,t) - u(L,t)W eL-x

2

Let =- . Then

e

(57) V t • [0,.), V x 0, ,) (L - ,,LI , u(x,t) -K

and [ u cannot be supported in the strips ([0,,) (1, - .,L]) 10,-). Let us extend

the initial conditions u,), uI  to the interval [- ,L + ] by:

u (-x) = -u (x) if x [-,01, i = Ol.I

u (L+x) = -u.(I.-x) if x [0,.1 , i = 0,1.

Then the corresponding fre( solution, w is defined on the cone T , with the
22+

property that

w(x,t) = , t

-15-



+ 3a)
1 
t

2 2

R

0 L L-L L L+ a x

2

Let u be defined on T by (29); then for x =0, t <
L L

(58) u(0,t) = w(0,t) + 2 sup {[w(x',tl) + K]) .

TOt

But, w(0,t) = 0 , and T is included in the strip E-a,] [ 0,-), so that w -K
alt

on this strip, and thus u(0,t) = 0 on [O,a]. Analogously, u(L,t) = 0 on [0,.

Therefore, (5.8) defined the solution of Pf on T n((0,L] [0,)).

Let us define by induction the solution of Pf on the region Rn  given by:

Rn (x,t) , (0,L] x [0,-)/ E + (2n-l)a - Ix -L I < t(59) n Ln2
<L +(2n+l)ct -1x

We shall denote by a the functionn

a (x) = - + (2n-l).i - Ix - L I if x (0,L]
n 2 2

0n(X) = 0(-x) on(L + x) = (L -x) if x [0,.].n n

Suppose we know u(x,a n(x)) for x [0,L]. Let

-16-
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w (x'cn(x)) =U(x'on(x)) if x 10,L)

w (x'o W)= -U(X,o Wx) if x [0,n n n
(60) w (X,OW))= -u(2L- X, a(2L-x) if x. [L; L +

n n n

O w = 0
n

The function w nis defined in the region

aCx) <t < (2n + 1) r, + - x - 'n x L +

Let us notice that the sysmmetry of the initial conditions in (60) implies

(61) w n(0,t) = w n(L,t) = 0 for (2n-1), < t _ (2n+l),i.

Moreover, as u (x'Go Wx) -K , V x [0,L) and as u satisfies the energy condition

(10), we shall have

(62)w n(x,t) > -K for a nx W _ t < (2n+l)Q + - xi or for

a Cx) < t < (2n+l)ci + - IL - xl.

Let

(63) u(x,t) - w n(x,t) + 2 supt(w n(xl,tl) + K) /oa (x') < t' , t - ;x - x*

Thanks to (61) and (62), u satisfies the boundary conditions. Therefore it solves the

problem of the string with an obstacle an R n and the induction can be pursued. a

-17-



III. A \:I;LSC-HLE:.

111.1. A n~umerical scheme in a backward cone for the zero obstacle.

:,.-t t.- be given initial data u, and ulon th, inte rval t-T,TI. We seek an

3rtoxima't 1 -11 tu t:it- I, '1)ICm i ON t',v backward eo

n n
l-- it, a ,t,,s) and let us detfine- dPscrttized initial data ur and u 1

0t:. f, lew i:; fjrmula

X) = +i I ~.)h) I ( (x-ph) + u (ph) if x (ph, (p4-1)h]

,I() 1 (xldxl if x [ph, (p+1) h]I

?e.t corr, :iiondinq free ,olution w' is given by

C(x,t) [u u(x-t) + h ) (.-t) + u~r 
1 

(x')dx'J
X-t

let us define

(65) w =h, 1 for o
2 222

Then w satisfies the finite difference, relation
1, )

(66)-h h - h

- h
Let us define- a function u,' on our mesh Y7

(67) + 2 max (w * .,) / 1 1 ,j j, I + -(

we coiIdefine i. alternatively by

(68) - 2 K'r

= if -n I

t.t2 tt Y is not t s Ii-qcretizrati)n oif k , it the Ii.;cretization of k.1

rf i. In. :.ara- terio:ti 'ore, 1 at wi.

,I m j t I t:" -,iir, wit!, ze.ro -hqtacle, and let u. be

P '1 '1 ('7) :e

(7) ~ M 'ax I( ' .
2, -

:A ir~iti Il



II
Moreover, we have the following bounds on the (approximate) characteristic de-

rivatives:~ih
T h -h l i

(71) lu - I f (U0  + u1 )(x')dxl(i-l)h

h h (-j+l)h
(72) u u -i I I (u )(x')d'1u U. -2 Ox-jh Ox

h
Proof. Let us first evaluate w.. - w(x',t') when (s',t') is in the characteristic

square centered on (1-3 h , h), with sides of length hV/ , i.e.
2 2

2i-1h < x' + t' < - h and --- h < x- t' < -2 h
2 2 2 -- 2

wh w(x',t') - W h-, h

1, 2 '2 -h h
[u (xI + t') - uh (ih) + u (x - t') - uo(-jh) +
2 0 + 0u0 0

x'+t' ih h
+ f u1 (y)dy - 1 u(y)dy].

-jh

~h -x'+t' x.-t'w(x,t) - ij < (Ux + u)adyl 2  
Ou x - U )2dyl /a]

ih -jh

<1 2 T 2 U l)2]dyl/2<([ (U0 +u u1  + (Ux - =
-T

We may then deduce from

(73) IW(X',t)- wh <//2 ( fT (u
2  

+ u2 )dx)1/2

-T u)x

that

iIsu{-h )- 'i, i j, , i, i+j > 0 -sup{[w(xl,t'l]-/02t' t- ;X-x":}lIsup{ (wi.j -/ 1

(74) (fT ( 
2 

x , i2 0 p2

< ( (Ux+u)dx)
2 -T O 1

h
Let us notice that w. =w( 1 h, +J h), because the approximation (64) is2~ 2 '

very particular.

This, in turn, gives
T 2 2 1/2

(75) max hj 2 h +3 (1 Cu + u)dx)
Iu.-u(LJ h h Ox-h

ij -T

This completes the proof of (70).
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We now turn to prove (71) and (72). Let us notice first that if

ih -h
- min{w, ,/i' < i, j, , i' + j' > 0.i,] ,J - --

h
We can write kn  alternatively as1,3

-h -h
(76) k = min{wi, /i < i, j' < j ,

-h
because we know from (41) that w.. , 0 for i+j < 0 , as long as we suppose that

the domain of influence is not empty.

Relation (76) implies that

(77) k.h. = in() + gh(j)

where

-h h h
(78) = f (i) + g (j)

and

f) i) = min{f h(i')/i' < i},

(9(j) = mingh (j,)/j, < j}.

Thus, (68) can be written as

-h -h [h -hj
u . = W . + 2f i) + g (j)]

ih ^h. 'ih(_) -
if T is not empty, if fi) + g (j) > 0 , then fh(i-l) + gh(j) > 0 , and (71)

is immediate. Suppose now that

(80) fh i) + ;h(j) < 0 .

We have two cases: in the first case,

(81) fh(il) + gh(j) > 0

Then, necessarily

(82) f h(i) = fh(i) < fh(i-1) < fh(i-l)

and thus,

_h -h h h h ;h(j)
ui j - Uil j = (i) + g (j) - 2f (i) - 2 -

h,(i-l) _ gh(j) = _[fh(i) + Ch(j) + fh(i_l) + gh(j)].

Thanks to (80) and (82), we get

t,j - Ui.lj! < fh(j) + gh(j), + lfh(i-1) + gh(j) I <

(83) 1 I? (,) - h

-20-



in the second case,

f (i-i) + g (j) < 0

if f (i-l) ?h~(i), we have immediately

(84) -h h_ lh( fh i1 .

If f (i-i) > f(i), then, we have (82), and

-h -h h h ih(, - h~ fh(,, gh~ ih(,, hu..' -u .
1
.' = f (i) + g (j -fC) 2 g - i 2 ii + 2f ii + 2g9 j

=2f h(i-i) _ fh(i) -fh(i-l),

and, thanks to (82) we have

h. - h. Ifh h i11

IFrom (83), (84) and (85), we deduce

- ;11_l .1<1~h - ~ = (i-l)h ( ~ (~xI

The proof of (72) is analogous.

we can deduce from (71) and (72) an energy inequality: let i0,j 0  be given such

that -n <i 0 ,j0 < n and i0 + jo> 0 Then we have:
0 j

0-h h 0 1 hj~ h 2<Z h1i - ~ J+ h 1, ,j-I11
(8) =-]j0 +1 0 1- Il j=-i 0 +l 0 1 10

1 j. [ u 12 (x ) + 1u 1  2 ~ l x

-21-



111.2 A numerical scheme for the string with fixed ends and a constant obstacle.

We shall use here the inductive construction of paragraph 11.3, whico we discretize.

Let u0  and uI be given on [0,L], and let

) 7 ' ( du(.,2 2 (87) = K-/ , ]-x + u,, dx !

where the obstacle is (x) = -K .

Let n be an even integer, and lt the ste, h L let u be the largest

integer such that n h

We discretize the initial data as in (64) for (Q n , and we continue thom D!

periodicity and imparity:
A h

u (x) = -u (-x) for -n h• x • 0; r 0,1;
r r 0

U (x) = -U (-x) for nh - x (n+n)h; r ),l.
r r

0,h
We define w by

w
0

1 h -n h x (n+no)h
.w
0
,h'88)-- (x,0) u (x) -n h x (nn )h

0, 0 0(88) __t_ h n~0

I -w0,h

__w 0 in T
n n-h ,h- +

and let

O,h w0'h( h 1+---h)
(89) w.. = h h

1, 2 '2

Let

-h -0,+ -e 4 -
u . w. .+ 2sup (w:. ") / i,j j, ij' 0
1,3 1, , - - -

where i n+n. j no, i+j _ .

rnh
Let us define a subset P

m '  
of Z- 2 by

P M 'h 
= In + (2m-l)n ,n + (2m+l)n [-n (2m-l)n ,(

2
m-l)n ,]

(91) I

[(2m-l)n,., n + (2m+l)n ]  • [(2m-l)n0 , (2m+)n, ].

The region m.h is the discretized equivalent (in i,; coordinates) of the

region rm defined by (59).

-...-
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We define wm'h on the lower boundary of R m~h by

%Ifor i =n + (2m-l)n0, -n + (2m-l)n0  < < (2m-l)no

-Mh -h
(9) w = U. for j = (2m-l)n0, (2m-l)n0' < j n + (2m-l)n0

wm~ = m~ for i = (2m-l)n0  (2m-l)n0 < i < (2m+l)n0

-rn,h _-m,h
w ij=wn+j,-n+i for (2m-l)n 0+n < i- < (2m+l)n0 +n, =-n+(2m-l)n

and in R m, we have

m h m,h mh m,h in m,h
(93) w. w + wm w for (i,j) & (i-l,j-l) inR

hm,h< bThen, we shall define u. on R ( (i,j)/O < < n b
1,3 - 2 -

-h -m h m ,h + )-/'<i '<jad (' ) Rm~h
(94) U. w. + 2 supj(wi )/ ,j nd ('j 2R'1

of course (94) is the discretization of (63).

Theorem 9. Let u hbe defined by (93), and let u be the solution of P fon (0,L]

with obstacle -K. Then

(95) max lah u(13h,13 mlA

. iJ 2 2
3 h

for (i,j) in the region Rm defined by (91), where C depends only on the initial condi-

tions. Moreover we have the following bounda on the (approximate) characteristic derivatives:

h -h 1 ih

f.( + u)OOl)dxIl
1,3 Ui...lj (i-l)h ( 0  u

(96)

Ih h~l 11-~~ u - xd

1,3 1,]-1 -j (Ox 1 ll'd'

if u0  and u1  are extended to all ]R by periodicity and imparity.

Proof. We shall replace the number a defined in (87) by n h ;for tnis new value of
0

we can perform the construction of the solution of Pf as in 11.3, and we shall

m -m,h mm,h
compare w and W,, on the regions Rm and R

Thanks to Theorem 8, the relation (95) is verified for m = 0 and
' 2 1/

C -(2 f (u'x + u2 )dx)l/ and the relation (96) is satisfied in R
Ox 1 0

Suppose that for a certain constant C ,(95) and (96) are satisfied in

-23-



Then we have

(97) 1wh -w m h , Jhl 
<

,2 ' 2 -

for i,j on the lower boundary of Rmh which is the upper boundary of R
m - l h

Then we have

-m(h m 5m i R mh

(98) wi' j - w( h, h)<5Cn in R
2h '-

because w . , (respectively w( h, h)) is the sum of at most five terms

2, 2
w, IIIh (respectively wm( h, i'+J 3h)) with i',j' on the lower boundary of

i " 2 ' 2

R 
m 'h  

(respectively (!2 h, h) on the lower boundary of Rm).
2 h 2

If we evaluate now the difference w h - m (x',t') when (x',t') is in the
i,_

characteristic square centered on 1 , -h , 1+J h with sides of length hv , we have
2 '2

(99) 1wim j  wm(x',t')l < 5Cmh + lwm( i-h, h) - w(xtl)

but we have for Pf the equivalent of (48), i.e.

J (xIt) = I-L-(x+t,0)I = I l (U 0  U)(x-t,0 j,-U(x,t x- u Ux

I t) I= ,--(x-tO) I= 1 u u ) (x-t,o ) ,

if y0  and uI  are extended to all of IT by imparity and periodicity.

Therefore,

f 2 m--(X,t)j l j(u0) + u1)(x + tO1

(100) m
LW(x,t) I I- I(Uu (x t,0) r,

Relation (100) allows us to evaluate wm(-ah i+h m
S 2 2h) - w

(101) Iwm(3 h ,I h) - wm (x't)I ( f (uo + u )dx)
'42 '2 Ox 1

Let us denote by E the number

E= L+o (u
2  

+u)dxf Uox 1
-rj

Gathering relations (97), (99) and (101), we obtain:

u - 20 h i~h) (l 5C"' + 2 V2E)

Therefore, if we choose C = 15 + 2V5 E, we have

15C
m + 2,3E < Cm+l.

The proof of (96) is immediate.
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mh
Remark 10. For (i,j) in RM' we have

i > (2m-l)n

2 - 0

and thus

1+ Mn < h( h/2n h) + 3
_ 2 0 2

Therefore, if (--h, !I! h) converges to (x,t) as h goes to zero, we have from
2 '2

(95): 
3

i2c 2

for all C, > C *and for all h small enough.



IV. REGULARITY IN SPACES OF FUNCTION OF LOCALLY BOUINDED VARIATION

This paragraph is dedicated to proving the following result of regularity for an

arbitrary concave obstacle 4.

Theorem 10. Let u0  and u be elements of o1 (D-1) and L 2oc () respectivel
itcly,

such that

du

(102) dx and ul are locally of bounded variation.

Suppose that u0  and uI  satisfy the compatibility condition (22), and that the

obstacle is concave.

Then for all , the function

~
- C- (rj)

defined on [-.,+') is locally of bounded variation, and analogously, for all the

function

uC

defined on [-.,+,s) is locally of bounded variation.

Proof. We retain the notations of 11.1:

U = ix/w(x,i (x)) 0 = u ai ,bi
i

a.+--(a.) b. + (b.
I 1L.... 1 1

(35)
-a. + (a ) -b. + ;(b.)

' zIi , -

Y =if ['' -

Y(') = [ ,i if =

C = ( [ i,:,])
c

i 'i

We have the following rcpresentation of thc solution:

u ",u,) f(-) + g(,) for ,1 YU )
(l03)

u( ,,) = f() + qP) for Y(C)

with the trantsmission conditions:

(104) f(-) * g(Y()) = f(-) + (y()) (( - Y(-))/ '3)

-26-



(105) f'(s) + gI(Y()) = -[i'( ) + g'(Y())] if Y is one valued

and 0 > Y'() >

If we differentiate (104) with respect to t on C , we get

1(106) f' j) + Y'()g'(Y)) = f'( ) + Y.(m)g.(Y)) -- I'(( -y( ))/'2)(-Y))

(notice that Y is decreasing on C , and therefore almost everywhere differentiable).

For Y' () = 0 , we deduce from (106) that

1
(107) f() = f() = - ))

For 0 > Y'(C) > -=, we deduce from (105) and (106) that f'(C) + f'(C) = 9'(E-Y( )

which contains (107). Therefore, we have

(108) f' (E) + f' (&) = 52 ' (C -Y(&) a.e. on C

c
and, differentiating (104) on C

(109) f'( ) = f'() a.e. on c

Let us denote by h the function

(110) h( ) = a (,ri)

where n is fixed throughout the end of this proof, and let

0 sup{C' E X(rj)}

Then, for < 0
'0

h() = f( )

and does not belong to any interval ( ).

To evaluate the total variation of h on a given bounded interval I = [a,b], we

|have to estimate:
CcTV(h;I)=TV(h;I n (- ,40)) + Tv(h;C r, ([0,+')) + TV(h; cc (n0,+)) + jh( 0 + 0) -

h o[jh(2' + 0) - h( - O)1 ) -

-. 0 i_

According to (108) and (109), we have:

T.V(h;I (-',r0)) + TV(h;C -" (0,+".)) + TV(h;C c  (0 ,+-)) -
(112) 0'

TV(f;I) + TV(
5 
s'(' ) - f();I)

By hypothesis, €" is positive, therefore ' is increasing; as - J. is in-

-reasing, the right hand side of (112) is; bounded.

i -27-



The term jh( 0 + 0) - h(0 - O)1 is bounded, because (102) ensures that f , and

therefore f is locally bounded.

The remaining term in (111) is the sum

(113) 1 [lh(&? + 0) - h(&! - 0)' + lh( i + 0) - h(&. - 0)1]

which could possibly contain an infinite number of terms. Using (108), and (109) we can

write the terms of (113) as

(114) f(. + 0) + f( - 0) - ,(- -- 0)1 + lf( + 0) + f ( - 0) - / -+

But we have the following inequalities, deduced from the definition of the line of influence

and of the intervals [ i, :]:

I Ci-n i
f(&i - 0) - ; (-- 0) = ai < 0

10) 1 E iT)i +

-f(i 
+  7 3 --7- 

+ 0) = ai . 0

f(1 - -0) 1 ' ( - - b

S 72 7r' -' b+ L 0

f(E + 0) - 1 P'( 
+ 

0) =+ 0

We can estimate (114) by

la + a+ -I + b+ + bjI + k- [j '(-- "-+ 0) - ' 0)1 +

(116)
+ nji +'n 0) 1 • O

But

la++aI + Ibt +b.I < la °+aI + Ibi-ai+I + la+ aI + a - b

1 1 1 1 1 1 1 1 i i

and using the sign conditions (115),2a+°l•Ii L< lai~+a. b- t  b
la ++ a-jb+ b hI < 21a 1 - b ~ + 1b 1 -

(117)

<--4 TV(f(<) -- U € ( ') [i ] .

Carrying (117) and (116) into (113), we obtain:

[lh(,? + 0) - h(j - 0)' + Ih(-.i + 0) - h(:. - O)
Ii/,0£ < 1b} 1

(118) '-

4 Tv(f; [0,.,-)) + 5 TV( . €' ( V j,

-28-



Here, = sup{W/i < b). The same argument holds for the other characteristic de-

rivative. The proof of Theorem 10 is complete; notice that we have proved, in fact,

that locally, TV(M (*,r1),I) is a bounded function of n , for all bounded I a
u au

Remark 11. It is not true that under hypothesis (102), L (.,t) or 2 (.,t) are of

bounded variation for all t

To see it, let us consider the following example. Let

w(x,t) = A-t - a(x+t)
4 

sin - if Ix + tj < b
(119) x+t

= A-r if Ix + tl > b.

1We choose b such that sin = 0 , and a such that the curve

(120) t = A-a(x+t) 4 sin IX+t

has always a slope lesser than I , for Ix+tI < b. For this purpose, we differentiate

(120) with respect to x :

t' = 4a(l+t) (x+t)3 sin l_ a(x+t)2 cos 1 . (l+t')X+t7+

and so,
4b3+b 2

(121) It l 4b 3 2

l-a(4b 3+b
2

Clearly t,I can be made smaller than 1 if a is sufficiently small.

Then, we choose A large enough to have

41
w(x,0) = A - ax sin 1 > 0 for jxl b

du x

Obviously, = Wx(x,0) and u1 = wt (%,0) are locally of bounded variation.

Thanks to (121), the line of influence is given by (120). We shall now see that

au (-,A) is not of bounded variation. The straight line t = A crosses the line of

influence infinitely many times, at the points
11

x -- A for I-LI < b, n E 2

and we have
-- 1 1 -A), k'0

au (x,A) = -1 if x -A
S(2k+2)7- (2k+l)-'

or if - I - A, - A k 0
(2k+l) (2k+2)

au 1
_ (x,A) = +1 if X -A A) k 0(2k+1 ' 2k-.

or if x A 1 1 -1 k 0i 2k- (2k+1)7

This function is not of bounded variation on any interval containing zero. a
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V. CONVERGENCE OF THE PENALTY METHOD.

V.1. Weak convergence.

This paragraph is dedicated to a general (and unfortunately coarse!) study of

the penalized problem

u (u- ) =

(122) u(x,0) = u 0(x)

'u

(x, 0) = u W(x)

where r = sup(-r,0), and ; is an arbitrary continuous function of x , and u0, u1

satisfy the compatibility condition (22).

Let us mention that (122) possesses always a unique solution; to see is, it is

enough to write (122) in the form of an integral equation, and to use Picard iterations.

Proposition 12. We have the following estimates for the solution u, of (122):
rb u>, 2 'U. 2 Au u

I u- (x, ()) ) + (x,c(x));
2 

+ 2(- (x,r)V x)Idx_
5 t )x t x_a

(123)

< fb (i. ,2 u JU1 1
2
)dx

a

for all Lipschitz continuou,- o with Lipschitz constant 1 such that 0 on (a,b),

o(a) = o(b) = 0I

(124) f 7 (U. (x',t') - (x)) dxldt' C(x,t,u 0 ,u I)

x,t

where C does not depend on A.

Proof. (i) Estimate (123).

We have the identity
f 3 , u "Au. 1u

1 2 *2](Zu (u - ) ( ) T -
't ix )t )X 2 r x

1 -)2+ - ((u - .) )= 0 .

Integrating on the region (x,t)/a - x b and 0 t (x) , we obtain the

identity
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!b [ h( , X 2 + I A X 3( ) 1 + lu, h

(x, Cx) + x~ax) )I +2 W x (-!- N. (x x)) +

+ (Cu CxaO(x)) - -X)- 2 Cx = Iu(do2 .1 )dx
a dx 1

noticing that (u,(x,0) - (x)) =0 for all x . From here, (123) is immediate.

(ii). Estimate (124).

We integrate Elu, = Cu - ) on the backward cone T
A X't*

X+t au
f Ou Adx'dt = f C-ae -xt - IX- x'l - u1C(xl,))dxl -

T- X-t
T t

au 3
ft C- (x + t -t',t') - - Nx t + tl))dt =

0 Dx a x
u au

fx L- CxI't -Ix -x[j) +- -- Cx't -Ix - xll)ldxl +
X-t a

x+t 3au 3
UX x+t

4+ f Cxl,t -Ix-xll) - C x-,t -Ix-x-l)]dxl - f u (x')dx'
x axx- t

Let a(xl) = t -Ix-xij. Then

f U~ x x,tl)dx'dt'<

- Tx,t

X+t au au +X+t

< f 5L Cx.,(x')) a Y~l- xlax)Il+ f IulCx')Idx

and using Schwarz inequality and (123), we obtain

f - u -) dxldt' <

T
X't

X+ta u au X+t 2 1w
f Lc 'C(,) IxI)-2  Cox)] 2 dx' 1/2Vr+ r ( dv t

--~ Cxl~a~x')) +xI ax2 C f uJ(x' dl/ t<

xt du

X-t d

We need definitions of left and right traces of the characteristic derivatives of a

function u

-31-
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The following results were proved in (1]: let u be in v (cf. def. (17)), suc:.

that O-u is a positive measure. Then the function

[ 1a,b)

is increasing from [-a,-~) to L 2(a,b) for all a,b, and similarly

rn,!) [c,d]

is increasing from [-c,-) to L 2(c,d) for all c,d.

We define

=u lim -Un+ h)

hiO

3 F , (" = lim 2U( ,T) - h)
(125) h~O

*r
DU ) lim 1-( + h,n)

an h~o an

au au
(F,ri) lrn ML - h, n) .

)-r
The functions "u-~ and 2-Iare defined for all not belonging to the null set 'Z.,

and for all n larger than - ; analogously, the functions ]L and 2L- are defined

for all n not belonging to the null set N nand for all larger than

Proposition V.2 and Corollary v.4 of [l] tell us that

3ur 2
L_ Lo (m*;(l + oa)dx)

2aIu (o L (W.;(1 - o')dx)
an bc

au (.,y(.)) kL 2 Gxjo(x) O}, (1 + .7)dx)

)UL 2(xlo(x) W}, (1 - c')dx).
a ri bc

Notice that the above traces are not continuous functions of u *We have the following.

example:

un (x't) =1 + In- t if t 1 n

=t - (U + 1) if t + 1
n - n

Then (x, 1) 2 YX, and un(x,l1) = - Y x,Yn
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We may now state the following result of weak convergence of the penalization:

Theorem 13. Given initial conditions u0  L I1 OR) and u L (IR) such thatSloc 1 loc

U0 >_ and uI > 0 a.e. on the set {xluolx) = P(x)}, there exists a function u

such that

(126) u f V

(127) u >

(128) Du > 0

(129) supp Du { (x,t)/u(x,t) =(x)

2 u r 2(xo(x))12Cl + u(x)) (x,o(x))12(l - a'(x))]dx <
a < b (jul12 duo 2

a

(130) rb 1 u (x, (1 
+  0,(x)) + 3u (x, (x))1(1 - j'(x))]dx <

a
duo< f a (lUl 12 + 1 d u_ 1 2) dx

b
for all Lipschitz continuous function o , with Lipschitz constant 1

such that o(a) = j(b) = 0 , 0 -, 0 on (a,b).

(131) u(x,0) = u 0(x)

S au (x,O) = UllX) if Uo(x) > ¢(x)132) fucii ut ishtZcntn(1 2 2 U (X ,o ) i < u (x ) i f U o x ) : (x )
at 1 u0x

Proof. From estimates (123) and (124), we can see that we can extract a subsequence

Su such that

(133) u * u weakly* in V

The weak * topology on V is defined by the semi norms

I I u fli + ,u x  f 2 1 + fut  f3

where flIf2 and f 3 are in L (IP ;L ( )) with compact support in D [,

we deduce from (133) that

(134) u u in C0(M - P ) with the compact topology.
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Possibly with a new extraction

(135) - (u - ;) - vaguely in (m • j) the set of measures on IR l+.

There fore

(136) u = . 0.

.:elation (123) gives a bound on in L an3 thus

To check (129), let (x ,t 0 ) be a point such that u(x ,t 0 ) (x,)); thanks to (134) we

can find a neighborhood U of (x0,t 0  and a jo such that u (x,t) - :(x) -

(u(x")'tf) - :(x )) Y ' " j.0 ' Y(x,t) , U

Therefore

u = 0 for

and in the limit

.2u = 0.
U

This proves (129).

To prove (130), let be given, and 0 be a positive number. Let us define for

'(x) + if x [a + 0 -

(137) (x) x - a + - if x [a 4 0- . a +
U 0 a-x + b - + if x , [b - -0' b 4 ]

Then (123) implies

" b-. 0 , t -, 'U

. [, - (x, (x)) (1+ (x) ) + (x, (x) 2 (1- x)) dx

L' du
1) u1 2)dx

dxa-

Bt the left hand side term of (137) car 1,, -Writt',n a:;

b- (x) - ,. *U
r IX- - (X, t) "H] ( )) - (x't)(1- '(x)) ,It

(x)-

S -- in ak' , q(jk ILrit i:. t:.r i i 4* 1, : t, (1 1)-

- - aaE~hE4-



Thus we can rewrite (138) without the index u

f d b l 0  [I (x)) 2e(l+0,(x)) + j-u(xO(x)) 1 (x))dx
_rl a+L0

139)
b+ 0  duo) J (]--x 12 + 1U11

2)dx
a-c0

Taking t' = 0 in (139) and letting E" tend to zero, we obtain

'- ' ( x , a ( x ) ) ( + ( ( x ) ) + u ( x -

a~~0~u2(+,Jr "21 (x))]dx_

b 0 du
b ( do 2 + lu11

2)dx

a-c0

Letting c0 go to zero, we obtain the first relation of (130). If we take " = 0

and let c' , then let E0 tend to zero, we obtain the second relation of (130).

The initial condition (131) is obviously satisfied. It remains to check (132).

For this purpose, let us take in (137) o(x) = 0 on [a,b). Then, ultimately we get

lb f~ur (x,0)12 
+ Ir~xold bIdu0 ju 1 )dx.an(,0ld <f( 1 21  I

Using the identity
12u- (x,0)12 +mr 2 du, 12 I(,0+0)12

(+,0) + I-2 -(xo) 1 = Idx + 7 ,T

which takes into account (131), we have

f f ,(x0+0)I12 dx _.fb u 1I
2dx .

b a
As a and b are arbitrary, we have eventually

I (x,)+)) < jUl(x)j a.e. on IR.

When u0 (x) > P(x), we have the first part of (132), as locally, v = u = 0 . U

au auX
We shall now study the relation between the strong convergence of n and -

and the verification of the energy condition (11).

Lemma 14. Let uA be a sequence of solutions of (122), converging weakly * to a solu-

tion u of (126)-(132). Then, u satisfies the energy condition (11) if and only if

uuu 3u 2
and converge to 2 and -L respectively, strongly in L (R x [0,)).
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(u - )

Proof. Notice first that as •1 K  converges to v * 1 K  in M( -3R+)Pof NoieKis

weakly, for all compact K , and as (u - p) converges to zero uniformly on compact

sets, then

-2
(140) f [((u - c)-)2/pldx'dt' + 0

K
for any compact set K

Let a, (x') = h - Ix-x'l. Then, we have the identity, for any function v

x+h
ft dh (Xh(x)) 12 (l+o(x)) + Lv(x,Oh(x))12 (1-a'(x))dx =

0 x-h 

h

(141)
t+X-x' x+t t-x+x' l

x dx' r 12-(x ,t)
2
dt' + f dx' f 2I. x(x',t') dt

'

x-t 0 x 0

If the limit of the sequence u satisfies (1i), then the value of (141) v u is

x+h duo 2
(142) ft dh f (i-l + 1U112 )dx

0 x-h

The value of (141) for v = u is

x+h du 12 ((u -)-)2
(143) f dh f (liI +u 1l

2)dx - f dxudt
o x-h O<t'<t-Ix-xl u ._

And according to (140), the limit of (143) is (142). Therefore, as (resp. -n

converges weakly to 2 (resp 12) in L oc([0,_) x M+), and
au au uu2

lim d't' + f l--1 2dx'dt' = f t 2 12dx'dt' + f , dx'dt'
xt X't Ax,t Bx,t

where Ax't = {(x',t') E T x,t/x' < 0} , Bx t = T ,t \ AX't , we can conclude that the

au 3u

convergence of au 0 and au P to au and L is strong.
au au

Conversely, if P (resp. - ) converges strongly to a-(esp. 1u), then it is

straightforward to pass to the limit in (11). a
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V.2. Strong convergence when the obstacle is zero and the initial characteristic

derivatives are of bounded variation.

The first step in this study is to notice that if w is an affine function, then th.e

penalized solution converges to the solution of (P_) which conserves the energy.

Lemma 15. Let there be given initial conditions

Su(x,0) = a - bx > 0 on (x0-t0 , x0 +t0 ]
(144) u

ut(xO) = -c < 0

and suppose that the free solution w(x,t) = a - bx - ct is such that

w(x 0,t ) < 0

Then the solution u, of (122) with initial conditions (144) is given by

u (x,t) = a - bx - ct for bx + ct < a
u ("W) c 2)i ct + bx -a/ -b

(xt) = - )sin ct b-- for a < bx + ct < a + r '"(c b
(145) /xc2 - b

2
) -

u (x,t) = bx - ct - a - rA,(C
2 

- b
2  

for bx + ct > a + r,' (c
2 
- b

2
).

Therefore uI  converges strongly in H (T0 ) to the solution of P
Ax0 t0 x0It0

Proof. Let us compute the solution of P

E C {(x,t) e T 0, / a - bx - ct < 0.
x0t

We see at once that the slope of the line a = bx + ct is smaller than 1 , in absolute

value. Therefore I = E , and

Su(x,t) = a - bx - ct if a - bx - ct > 0
(146) ux

u(x,t) = bx + ct - a if a - bx - ct -0 .

Let us look for the solution of (122) with initial conditions (144) under the ---m

u\(xt) = fx(bx + ct)

Then f must satisfy the ordinary differential equation
2 2 1-

(c - b)f" -
f- = 

0

with the initial conditions

f X (z) = 0

f(a)= -1.
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This problem can be solved im.ediatel an . t

sequence u is u , and hemma 14 all,,ws -,s t*, . a

Remark 16. Su .'s w.e reilsct f nrtro:. r

(x) v if X

.(x) x

then the :,nalizci o roblem

2 (x, ( u _(XC

- (x, ) 1 1 Cx)

can oe studied as above; we get Theorem 14 wit lm * ln-sc :o <n.q1'-l in th, ?r,(f. Iro r

a phase plane analysis shows easi-'.' that in th.c casi, of initial data (144) t:e linit if

u is the function (146). We chose tire specific penalization (122) becaase of it, sir: lie-

ity. We need an integral solution of the linear Klein-Gordon equation with initial values

given on a curve t = '(x). It is the object of the next lemma.

Lemma 17. Let w be a solution of the wave equation on the set S = (x,t)/:(x) t

t - x-xoJ: where is a Lipschitz continuous function with Lipschitz constant I0J

Then the unique solution on S of the problem

i1
. .u * -u = 0

(147) 1 u(x,-(x)) w(x,A(x))

S (x, -(x) (x, (X)) a.e. on -x/-'(x), 1 .

is given by

2 (1 F / ( t - t ' ) 2 _ x .x

(148) u(x,t) = w(x,t) - ( ( t - )w(x',t')dx'dt'

x'twhere x

(149) J0(y) = (-I)
n- n! Z

is the Bessel function 3

-1,,
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Proof. We verify that if w is a solution of the wave equation in the whole plane,

and if,
0 if t < OWx

w(x,t) = 0
then, w(x,t) if t > o(x)

then,

(Lw, ;) -fw(x,o(x))( t(x,O(x)) + o'(x)x (x,o(x)))dx +

+ f[wt(x, (x)) + o'(x)wx(x,o(x))]p(x,o(x))dx.

Solving 1147) amounts to find a solution of1 t
(fu + I {rxt)/t > o(x)} = 0

u(xt) I{ (xt)/t < O(X)} 0

u(x,o(x)) = w(x,o(x))

(x,o(x)) = 2w (x,o(x)) a.e. on {x/lo'(x)I < 1}

which can be written as

- 1
(150) U = w U

where I is the elementary solution of the wave equation defined by

I if t > x&(X,t) =0
0 elsewhere

The convolution equation (150) has a unique solution given by

(151) u= [ ( * )*w
n=O 

n  
k=l

By a simple inductive calculation in characteristic coordinates, we obtain:

(152) n )n 1
k=1 ((n-l)!)

Therefore

(153) t)
k=*l 2 0 An=l

Together with (153), formula (151) gives (149).

We can now state the theorem for convergence for penalized solutions:
du

0
Theorem 18. Let u0 and u1 be such that dx and u1 are locally of bounded variation

(154) and suppose they satisfy the compability condition (22). Then the solution

u of (122 converges to the solution of P when goes to zero.
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Proof. Let us first notice that on I
c
, the complement of the domain of influence, we

have, if u is the solution of P

O3u = 0 1I

on I

Thereforeic
u x = u on Ic

and, in particular,

u(x,t(x)) = u(x,r(x)) = w(x,r(x))

(1 5 5 ) 
a u A 

u =a

3r at-(rT~x) a x~rx)- 0) = - (x,T(x)) a.e. on {x/1r'(x)I <

where we recall that T , the line of influence, is Lipschitz continuous, with Lipschitz

constant 1

We shall now use assumption (154) to obtain more information about the line of

influence. We need the following notations: At

*2 = {(x,t)/x > Itfj

(156)
Q3 = {(x,t)/x <-ItIl}

= {(x,t)/t <-Ix I}

/ 3Q 4

We shall denote
aw aw

(157) - (xt;Q lim -! (x+h,t+k) .
(hk) -0

(h,k),Qi
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Thanks to (154), (x,t;Q.) is defined for 1 < i < 4, and we have the formula
at -

aw aww r

(158) W (x,t;Q[) = [ (x,t) + (x,t)]

with notations (125). We have analogous formulae for the three other limits.

Lemma 19. Let x be such that T'(x) is defined and IT'(x)i < 1 . Suppose that

(159) max a (x,t;Qi) < 0
1<i<4

Then there exists a neighborhood (x-E,x+c) of x such that Ix'-xl < = T'(x') has

left and right limits at every point and IT'(X' ±0)l < 1

l<i<4sup w (xT(x,);Qi) < -k < 0

Proof. The hypothesis (159) implies that, in a neighborhood N of (X,T(X)):

sup tw -k < 0
l<i<4 at (x' 't;Qi -

therefore w(x',.) is strictly decreasing for x close enough to x , and moreover

if k is so chosen that w t(X,T(X)) + k w (x,c(x)) < 0 , thent x

w(x + kh,T(x) + h) < 0

Thus, there exists a unique solution to the problem:

w(x', '(x')) = 0
(160)

max(Ix-x'1,I1(x') - T(X) I) < C where a is a small positive number.

To prove that a is identical to T in an interval [x-a',x+a'] where a' may be

smaller than a , we have to check that

Ic'(x') I < 1 a.e. on [x-a',x+x']

The function a is continuous indeed, as w is continuous and t' = c(x') is the

unique solution of w(x',t') = 0 in N . We may not directly differentiate the rela-

tion w(x',0(x)')) = 0 , as we do not have the assumptions of the implicit function

theorem. But, with the very same argument as in this theorem, and using notation (157),

and its analogue for au ' we have

w(x'+h,o(x+h)) = w(x,o(x')) +w x(x',O(x');Q1 ) h +

(161) + wt(x',o(x);Q2 ) (a(x'+h) - o(x')) + kl(Ohl + Ic(x,+h) - o(x,) )

for all h such that (h,o(x'+h) - o(x')) Q"
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Here E is a function such that

lim 1i(k)

k-0 k

By a standard argument
- w (x', -(x');C

(162) lim (x,; 

(h,,, (x'+h)-,., (x')).Q

The same result holds in the three other quadrants Q2 ' (3 and Q4 and hy choosing

adequately small we shall have

w (x",a(x);Q.)
x

i w (X'j(X' );) I for Jx-X'

and thus

(h,o(x'+h) - i(x')) Q for h 0 small enough

(h, (x'+h) - (x')) - 3 for h 0, Ihl small enough

iO~ l -i 1- a.e. on [x-,x+

(x') = o(x'), and :' has right and left limits at all points of

fx-KA ,x+VA' 1.

Let us compare locally the solution of the linear Klein-Gordon equation (147) to the

solution of an approaching problem with simpler initial data. Let

i)T( _w (x0 ,to)
0~~~ 0' 00w 0~)INtoo

i (0) = o , (x 0 )  m w t(x 0,t 0)

0(x) = to + m(x-x),

w0(x,t) = Wt(x0 ,t0 )(t-t 0 ) + Wx (x0 ,t0 )(x-x 0),

u 0 (X, 0()) = w 0(x,,-0 (x)) =
tu0  0-w 0- -(x[0x) --- (x, t0 (x)) = wtx,0

So  {(x,t)/t 0(x .

Then:
t-t -m (x-x 0

ur (x,t) = /(l-m
2 ) w (x ,t) sin 0

-42-
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With the help of (148), we have

u(x,t) - u0 (x,t) = w(x,t) - w0 (x,t) -

(163) /t-' -  (- 2

(12-~3 )f (t-t) X(w is)(x,t') - (w0  10 )(xl,t')]dx'dt'.

x't

Let us estimate (163) for x and t such that

(164) Ix-x01 + It-tol < C /

and under the hypothesis that IT'(x 0)I < 1 and that wt (x0 ,t0) and wx (x0,t0 ) are

well-defined. Then:

Iw(x,t) - w0 (xt)I < o(lx-x0 1 + It-t0 ) = o(vx).

To estimate the integral, let us first note that

w.l s -w 0 " s 0 1 Lw- ls so

This relation comes from the fact that, locally, w IS, -w and w0  1 =-w
S0 0

We define new variables X and T by

t-t- = T/X

x-x* = X4

Then the integral expression in (163) is estimated by:

AT+ f iJo(/T2-X2 )lw(x-x4,t-T/i) - w0 (x-XVA,t-TX) Iss 0 (X-XVX,t-TV7)dXdT.
0,0

But :

jw(x-X/X,t-TVX) - w (x-XV,t -TV' -X/X-0  + -Tv-t 0 1)
+

and we have to check that {(X,T) TOO / (x-XVX,t-T') ( S S O} is bounded. This set

can be written as:

{ ~x,'~iixi - mit (x-XrA) ,T (x XV5)(X,T)/IXI T mi 0 /

and, using the fact that IT'(x ) < 1, this set is bounded, under the condition (164).

Thus, immediately:

(165) ju(x,t) - u 0(x,t)I =

A consequence of (165) is that, for > sufficiently small, the solution u of (147) is

negative on the set

(166) T - {(x,t)/t L (x) .
i x0'~0x to + (...))-

-43-
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This uses the fact that ut < 0 on a neighborhood of x0  as was proved in Lemma 19.

Therefore, on the set (166), the solution of the penalized problem (122) is the solu-

tion of the linear problem (147), for A small enough. We have thus, for (x,t) on the

set (166):

auA (x ,t') = 1 (x' t') - 2L -L (x',t-lx-x -1)dx' -

7t * at -2X (x',t- fX-X1 )ES a

1 Tf J;[ t-t')2 (x-XI)2j (t-t,)(w . 1s)(x,t)dxldt.

x,t

Reasoning as for (165), we can prove, under assumption (164) that

[-- D (xt)i o(1)at at
or:

aux  ,t) - w t-t o-m(x-x 0at t~x~o 0 o /X "o 1
and, in particular

lim au_ (Xo,t0 + (_T-0)A(lm 2 ) = +wt(x0gt 0) cos(OT-r)J A-O at

(167)

on {x 0 /T'(X 0) < 1 and wt (x 0 T(X0 );Qi) < 0 , i = 1,...,4}.

Analogously

lira (x0,t + (-C)/AI-m)) = w (x ,t0) cos (O -C)

(168)

on {x0/T'(x 0) < 1 and w t(x0 ,T(X 0 , i = 

and (167) and (168) in turn imply:auA

lim l- (Not0 + (1T-) m . wN(x0 ,t0 ) cos(7-E)

(169)
au

lir ( t + (2 - _ . w (x0 ,t 0 )cos(OT -).X-'O r 0

Therefore, the limit u of u satisfies:

Z (x,T(x)) = - w (x,T(x))at at

a.e. on (x/J '(x)j I.

This proves that u is indeed the solution of P a
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